Langchain Go
Langchain Go is a framework for developing data-aware applications powered by language models in Go.
You can use Qdrant as a vector store in Langchain Go.
Setup
Install the langchain-go project dependency
go get -u github.com/tmc/langchaingo
Usage
Before you use the following code sample, customize the following values for your configuration:
YOUR_QDRANT_REST_URL: If you’ve set up Qdrant using the Quick Start guide, set this value tohttp://localhost:6333.YOUR_COLLECTION_NAME: Use our Collections guide to create or list collections.
import (
        "fmt"
        "log"
        "github.com/tmc/langchaingo/embeddings"
        "github.com/tmc/langchaingo/llms/openai"
        "github.com/tmc/langchaingo/vectorstores"
        "github.com/tmc/langchaingo/vectorstores/qdrant"
)
 llm, err := openai.New()
 if err != nil {
  log.Fatal(err)
 }
 e, err := embeddings.NewEmbedder(llm)
 if err != nil {
  log.Fatal(err)
 }
 url, err := url.Parse("YOUR_QDRANT_REST_URL")
 if err != nil {
  log.Fatal(err)
 }
 store, err := qdrant.New(
  qdrant.WithURL(*url),
  qdrant.WithCollectionName("YOUR_COLLECTION_NAME"),
  qdrant.WithEmbedder(e),
 )
 if err != nil {
  log.Fatal(err)
 }
Further Reading
You can find usage examples of Langchain Go here.
